
A Comparison of Multithreading, Vectorization, and GPU Computing for the
Acceleration of Cardiac Electrophysiology Models

Chiheb Sakka1, Amina Guermouche1,4, Olivier Aumage1,5, Emmanuelle Saillard1,5,
Mark Potse2,3,4, Yves Coudière2,3,4, and Denis Barthou1,5

1 STORM Research Team, Inria centre at the University of Bordeaux, Talence, France
2 CARMEN Research Team, Inria centre at the University of Bordeaux, Talence, France

3 IHU Liryc, fondation Bordeaux Université, Pessac, France
4 Univ Bordeaux, IMB, UMR 5251, Talence, France

5 Univ Bordeaux, Bordeaux INP, UMR 5800, Talence, France

Abstract

Realistic simulation of cardiac electrophysiology re-
quires both high resolution and computationally expensive
models of membrane dynamics. Optimization of membrane
models can therefore have a large impact on time, hard-
ware, and energy usage. We tested both CPU-based and
GPU-based optimization techniques for a human heart
model with Ten Tusscher-Panfilov 2006 dynamics. Com-
pared to a multithreaded code running on 64 CPU cores,
the tested NVIDIA Tesla P100 GPU proved about 3 times
faster. Effective use of the CPU’s SIMD capabilities al-
lowed a similar performance gain. GPU performance was
bounded by the data transfer rate between GPU and main
memory. Optimal SIMD use required explicit vectoriza-
tion and an adapted data structure. We conclude that on
mixed CPU-GPU systems the best results are obtained by
optimizing both CPU and GPU code and using a runtime
system that balances CPU and GPU load.

1. Introduction

In a monodomain reaction-diffusion model of cardiac
electrophysiology the integration of the membrane state
and the computation of transmembrane ionic currents at
each model node is the most expensive part of the simula-
tion. Acceleration of these tasks is interesting especially
for large models with millions of nodes or elements on
which membrane models must be integrated. Even though
this task is embarrassingly parallel (it requires no com-
munication between model nodes) a straightforward paral-
lelization using OpenMP, MPI, CUDA, or OpenCL usually
performs far below the expected performance of the CPU
or GPU. In this study we tested a variety of acceleration
techniques, ranging from compiler options to code trans-
formations, using the Ten Tusscher-Panfilov model [1], a

Table 1. Models used for the tests.
Model ∆x (µm) ∆t depolarization nr. of nodes
S 200 0.0500 10,040,000
M 100 0.0125 80,160,000

commonly used and moderately complex model for the hu-
man ventricular myocyte, and identified data bandwidth as
the main bottleneck both on CPU and on GPU.

2. Methods

The baseline code for this work was a simplified version
of Propag-5 [2], able to run large monodomain reaction-
diffusion simulations with hybrid MPI-OpenMP paral-
lelism. To determine the impact of optimizing the shared
memory parts, in particular the membrane model, on this
code, we tested, with different approaches, the perfor-
mance of a model of the whole human ventricles with
model sizes of 107 and 8 · 107 nodes (table 1), using ei-
ther 1) up to 64 compute cores on two compute nodes
each equipped with two 16-core Intel Xeon E5-2683 v4
“Broadwell” CPUs with a clock frequency of 2.1 GHz,
an NVIDIA Tesla P100 GPU, and 256 GB memory and
equipped with AVX2 extensions, or 2) up to 72 compute
cores on two compute nodes each equipped with two 18-
core Intel Xeon Gold 6240 “Cascade Lake” CPUs with
a clock frequency of 2.6 GHz and 192 GB memory and
equipped with AVX512 extensions. In each test we inte-
grated a monodomain reaction-diffusion equation with an
explicit Euler method for 50 ms simulated time.

Tests with model S were run on one or two machine
nodes. Tests with model M required two nodes.

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.399



x3 y3 z3 x4 y4 z4 x5 y5 z5 xn yn zn ...

Array-of-Structs

x3 x4 x5 xn y1 y2 ...

Struct-of-Arrays: CUDA

 ... z1 z2 z3 zn ...

Array-of-Structs-of-Arrays: SIMD

 ...

SIMD Width

x2 y2 z2

x2 y3 yn

x1 y1 z1

x1 y4 z4

xn-1 xnx2x1 x3 x4y1 y2 y3 y4z1 z4z2 z3 yn-1 yn znzn-1

Figure 1. Different data layout representation, in Array-
of-Structs-of-Arrays (AoSoA), each component is stored
in smaller contiguous chunks corresponding to the size of
the vector extension. In SoA, the large contiguous chunks
of memory for each variable have benefit in terms of con-
tiguous memory accesses for CUDA kernels

2.1. OpenMP and Vectorization and mem-
ory access optimization

Modern processors can execute single-instruction
multiple-data (SIMD) instructions, also called vector in-
structions, allowing to perform up to 8 floating-point oper-
ations at once. However, compilers have difficulty recog-
nizing opportunities for vectorization and may be unable
to perform the data reorderings that are necessary to use
them efficiently. Therefore we enforced vectorization us-
ing a portable high-performance C++ SIMD library called
MIPP [3], for SSE, AVX and AVX-512 instructions.

Data layout is particularly important for the status vari-
ables of the membrane model. In the baseline code these
were organized as an array with all variables of a single
node stored contiguously. To take advantage of SIMD we
used an AoSoA (Array of Structures of Arrays) order, in
which a single variable is contiguous for a small group of
model nodes, such as to constitute a “data vector.”

2.2. GPU CUDA

Graphics processing units (GPUs) have developed into
mainstream accelerators for computing. They have par-
allelization levels that range into the thousands, but their
computing capabilities are limited and automated compi-
lation for GPUs often leads to speedups that are orders of
magnitude smaller than the number of compute cores in the
GPU. Several cardiac simulation codes have already been
adapted for use with GPUs [4–10].

A preliminary analysis showed that compute time in our
code was small compared to the time needed to transfer
data between the CPU and GPU. This pertains to the trans-
membrane potential, the ionic current, stimulation and
diffusion current, and depolarization time of cells. The
membrane status variables, a much larger amount of data,
stayed on the GPU during the entire simulation. We used
CUDA streams to overlap computations with transfers.

3. Results

Figure 2 shows the speedup obtained by different paral-
lel algorithms for model S on the Broadwell architecture:
cumulated time for membrane model computation and to-
tal program execution. The speedup is measured with re-
spect to the execution time of the multithreaded original
code compiled with gcc. It shows the relative increase
of the vectorised version’s performance using the MIPP
wrapper, compiled with icpc version 19.0.4.243 with op-
tions -O3 -inline-forceinline. The vectorized
version used AVX2 extensions, the most advanced avail-
able on the machine. The CUDA version shows that
concurrently executing copies and kernels using up to
4 streams improves the performance.

Figure 3 shows the speedup obtained by different paral-
lel algorithms for model M on the Broadwell architecture.
CUDA-enabled versions use concurrency up to 64 streams
due to the size of this model. Using the same compilation
options, it shows approximately the same relative perfor-
mance increase for the vectorised version as for the CUDA
version. On the Cascade Lake platform, we could test
different SIMD instruction sets (SSE, AVX2 and AVX-
512). Figure 4 shows that an optimised data layout in-
creases the performance of the vectorised version: SSE
extensions allow to use vectors of 2 double elements (the-
oretical speedup can reach at maximum 2), but allowed
a three-fold performance increase. The AVX2 instructions
further increased performance, but AVX512 had no further
impact.

In order to understand this behavior, we studied the ef-
fect of cache and memory bandwidth on the performance
of tp06 using a roofline model [11]. A roofline model vi-
sualizes how kernel performance is affected by the mem-
ory bandwidth of a specific architecture. When the perfor-
mance is close to the peak performance of the architecture,
then the kernel is compute-bound and is not affected by
the memory bandwidth. In contrast, when the kernel per-
formance is far from the peak performance, then it most
likely limited by some cache level bandwidth or by the
memory bandwidth. Figure 6 shows the behavior of tp06
on the Cascade Lake architecture. The figure shows that
the vectorization improves the performance compared to
the baseline implementation. Moreover, it shows that there
is no performance difference between AVX2 and AVX512.
This shows that the performance is limited by the level-3
cache and the memory bandwidth, which explains the re-
sults of Figure 4.

4. Discussion

On our test platforms, both vectorization and the use of
GPUs allowed for a roughly three-fold acceleration of the
membrane model compared to multithreaded execution on

Page 2



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Baseline+ICPC MIPP+AVX2 CUDA CUDA-Str2 CUDA-Str4 CUDA-Str8

S
pe

ed
up

 total
 TP06

Figure 2. Speedup for model S on 1 node (32 threads) on
Broadwell architecture. The graph shows the impact of im-
proving membrane model performance on the membrane
model alone (“TP06”) and on the whole program (“total”).
Str2. . . Str8 stands for 2 to 8 CUDA streams.

 0

 0.5

 1

 1.5

 2

 2.5

 3

MIPP+AVX2

CUDA
CUDA-Str2

CUDA-Str4

CUDA-Str8

CUDA-Str16

CUDA-Str32

CUDA-Str64

S
pe

ed
up

 total
 TP06

Figure 3. Comparison of the speedup for model M on
2 MPI nodes (64 OpenMP threads in total) on Broadwell
architecture.

the CPUs alone with no special care to leverage the SIMD
capabilities of the compute cores. Since this probably con-
stitutes the current state of many cardiac simulation codes,
this is a useful investigation into two very different avenues
for acceleration.

The outcome of our study indicates that vectorization
and GPU coding allow for significant acceleration, and that
the optimal solution would be to perform both and divide
the computations between the CPU and the GPU.

A second important outcome is that memory transfers
are the bottleneck for GPU performance on our tested sys-
tems. A practical consequence is that investing in more
CUDA cores is useless if it is not combined with a higher
data transfer rate between the GPU and the main memory.

The outcome of a comparison such as ours obviously de-
pends on the capabilities of the CPUs and GPUs involved.
We used CPU types that are currently mainstream in pow-
erful workstations. With cheaper CPUs or more powerful
GPUs the outcome would likely have been different.

 0

 1

 2

 3

 4

 5

SSE AVX2 AVX512

S
pe

ed
up

Vector extension

 total
 TP06

Figure 4. Comparison of the speedup of vectorization ac-
cording to Vector Extensions for model S on 1 node (36
threads) on Cascade Lake architecture.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SSE AVX2 AVX512

S
pe

ed
up

Vector extension

 total
 TP06

Figure 5. Comparison of the speedup of vectorization ac-
cording to Vector Extensions for model M on 2 MPI nodes
(72 threads) on Cascade Lake architecture.

Speedups reported in the literature indeed vary widely.
For example, Sato et al. [4] reported a factor 30 speedup
with an NVIDIA Geforce 9800 GX2 GPU, but this was
in comparison to a two-core CPU. Given that we used 32
times as many cores for our baseline code, our speedup
was actually 3 times better than theirs, if we assume that
both CPUs and GPUs improved by the same amount in the
13 years that passed since their study was published. In
other words: in the study by Sato et al. a GPU appeared to
be worth 60 CPU cores, and in ours 192 CPU cores.

In a more recent study by Neic et al. [6], a single GPU
appeared to be worth about 15 CPU cores. This imple-
mentation was quite different from ours, because also the
partial differential equations were solved on the GPUs.

Although the cited codes and hardware are very differ-
ent from each other, it is clear that the performance of
a GPU core is, in practice, for large-scale cardiac elec-
trophysiological models, one or two orders of magnitude
lower than that of a CPU core.

We tested either vectorization or GPU optimization. Op-
timization of code with such fixed choices requires man-

Page 3



L1 Bandwidth: 1.26e+4 GB/sec

L2 Bandwidth: 5941.42 GB/sec

L3 Bandwidth: 880.28 GB/sec

DP Vector FMA Peak: 2851.61 GFLOPS
SP Vector Add Peak: 2851.61 GFLOPS

Scalar Add Peak: 185.34 GFLOPS

DP Vector Add Peak: 1425.67 GFLOPS

SP Vector FMA Peak: 5703.48 GFLOPS

DRAM Bandwidth: 236.03 GB/sec

1.6348

5703.481

4

10

40

100

400

1000

0.012 0.04 0.07 0.4 0.7 1 4 7 10 40 70 100

P
er

fo
rm

an
ce

 (G
FL

O
P

S)

Arithmetic Intensity (Flop/Byte)

Figure 6. Roofline model comparison for the baseline tp06 loop (represented as circle) and vectorised algorithms (repre-
sented by a square (SSE), triangle (AVX2) and diamond (AVX512)) using Intel Advisor for model S on 1 node (36 threads)
on Cascade Lake architecture.

ual adaptation to each specific platform and depends on
the performance of its CPUs, GPUs, the data transfer rates
between them, and on the balance between computational
load and memory requirements of the simulation. An al-
ternative for such manual tuning would be to use a runtime
scheduler [12], which can find the optimal partitioning of
the workload at runtime.

Acknowledgments

This work was supported by the French National
Research Agency, grant references ANR-18-CE46-0010
(EXACARD) and ANR-10-IAHU04-LIRYC.

References

[1] Ten Tusscher KHWJ, Panfilov AV. Alternans and spiral
breakup in a human ventricular tissue model. Am J Physiol
Heart Circ Physiol 2006;291:H1088–H1100.

[2] Krause D, Potse M, Dickopf T, Krause R, Auricchio A,
Prinzen FW. Hybrid parallelization of a large-scale heart
model. In Keller R, Kramer D, Weiss JP (eds.), Facing the
Multicore-Challenge II, volume 7174 of Lecture Notes in
Computer Science. Berlin: Springer, 2012; 120–132.

[3] Cassagne A, Aumage O, Barthou D, Leroux C, Jégo C.
MIPP: A portable C++ SIMD wrapper and its use for
error correction coding in 5G standard. In Proceedings
of the 2018 4th Workshop on Programming Models for
SIMD/Vector Processing. Vienna, Austria: ACM, 2018; 2.

[4] Sato D, Xie Y, Weiss JN, Qu Z, Garfinkel A, Sanderson
AR. Acceleration of cardiac tissue simulation with graphic
processing units. Med Biol Eng Comput 2009;47:1011–
1015.

[5] Shen W, Wei D, Xu W, Zhu X, Yuan S. Parallelized
computation for computer simulation of electrocardiograms
based on whole-heart models using personal computers
with multi-core CPU and GPGPU. Comp Meth Prog
Biomed 2010;100:87–96.

[6] Neic A, Liebmann M, Hoetzl E, Mitchell L, Vigmond EJ,
Haase G, Plank G. Accelerating cardiac bidomain simula-
tions using graphics processing units. IEEE Trans Biomed
Eng 2012;59:2281–2290.

[7] Mena A, Ferrero JM, Matas JFR. GPU accelerated solver
for nonlinear reaction-diffusion systems. Application to the
electrophysiology problem. Comput Phys Comm 2015;
196:280–289.

[8] Kudryashova N, Tsvelaya V, Angaldze K, Panfilov A. Vir-
tual cardiac monolayers for electrical wave propagation.
Scientific Reports 2017;7:7887.

[9] Vandersickel N, de Boer TP, Vos M, Panfilov AV. Perpetua-
tion of torsade de pointes in heterogeneous hearts: compet-
ing foci or re-entry? J Physiol 2016;594:6865–6878.

[10] Hustad KG. Solving the monodomain model efficiently on
GPUs. Master’s thesis, University of Oslo, Sep. 2019.

[11] Williams S, Waterman A, Patterson D. Roofline: An in-
sightful visual performance model for multicore architec-
tures. Commun ACM apr 2009;52(4):65–76.

[12] Augonnet C, Thibault S, Namyst R, Wacrenier PA. StarPU:
A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. CCPE Special Issue Euro Par
2009 February 2011;23:187–198.

Address for correspondence:

Chiheb Sakka, Storm team, Inria Bordeaux – Sud-Ouest
chiheb.sakka@inria.fr

Page 4


